Charge transfer dynamics in polymer heterojunctions

What is the reaction coordinate?

Eric R. Bittner

Department of Chemistry
University of Houston, Houston Texas

October 10 / Cambridge University
Central Question: How do specific vibrational degrees of freedom tune, couple and modulate quantum energy transfer between donor and acceptor species on an ultrafast timescale?

Topics
- Lattice models, Quantum Chemical approaches (TD-DFT)
- Analytical methods, Statistical approximations
- Numerically exact propagation: MC-TDH
- Decoherence
- Mixed quantum/classical techniques
- Quantum trajectory/Bohmian dynamics
- Quantum thermodynamics of small clusters

Systems: Polymer heterojunctions, Light-harvesting systems, photoexcitons in DNA, Rare gas clusters
Theoretical Challenge: Real-time quantum dynamics

MD Simulation limit
- classical mechanics (or CPMD)
- limited to 10,000 to 100,000 atoms

Quantum Chemical limit: $H\psi = E\psi$
- (electrons)
 - Born-Oppenheimer Approx.
 - Excited states: limited technology
 - ≈ 100 atoms

Quantum Dynamics: $i\hbar \dot{\psi} = H\psi$
- very limited technology
- < 10 degree of freedom
- (4 atoms = state of the art)

impossible: no masochistic: yes!
Left: image of TFB:F8BT (1:1) blend under photo luminescent electro-luminescent conditions. Right: energy level diagram of emission spectra.\(^1\)

\(^1\)Figure c/o Carlos Silva
If off-set between HOMO (or LUMO) levels at the interface is large compared to binding energy of exciton (0.5eV), interfacial charge-transfer states are energetically more stable than excitonic states. (great for PVs)

Otherwise Excitonic states are energetically favored (great for OLEDs)
In TFB:F8BT energy difference between the CT and XT states is comparable to kT at room temperature.

- possibility of back transfer and formation of secondary excitons.
- Nearly 80% of observed emission is due to 2nd-ary excitons.

Quantum Chemical Studies of Heterojunction Interfaces
General approach: MD + DFT to optimize structure, then TD-DFT/6-31G**/B3LYP + HF exchange.\(^3\)

Computationally expensive (about 1 month CPU time/calculation).

Why is the stacking (slippage) an issue?

- In excited state

\[\cdots - F8^{\delta+} - BT^{\delta-} - \cdots \quad \& \quad \cdots - F8^{\delta-} - N\phi_3^{\delta+} - \cdots \]

(1)

due to alternation of HOMO/LUMO levels from each monomer.

- Eclipsed (attractive)

\[\cdots - BT^{\delta-} - F8^{\delta+} - BT^{\delta-} - \cdots \]

(2)

\[\cdots - N\phi_3^{\delta+} - F8^{\delta-} - N\phi_3^{\delta+} - \cdots \]

(3)

- Staggered (repulsive)

\[\cdots - BT^{\delta-} - F8^{\delta+} - BT^{\delta-} - \cdots \]

(4)

\[\cdots - N\phi_3^{\delta+} - F8^{\delta-} - N\phi_3^{\delta+} - \cdots \]

(5)
Map of interaction energy

Figure: DFT structure/INDO descript. of PFB excited state/Coulomb interaction w/F8BT (ground state).

TFB:F8BT Heterojunction

TD/DFT energy levels for eclipsed vs staggered configurations for model solvent dielectric (toluene) vs. gas phase.

Note: considerable exciplex stabilization due to solvent polarization

Only eclipsed exciplex state carries appreciable oscillator strength.
TFB:F8BT Heterojunction

Figure: Projection of excited states onto monomer units

- **Eclipsed**: exciplex has considerable mixing between purely excitonic configurations and purely CT configurations.
- **Staggered Exciplex**: almost purely polaronic (CT) configurations.
Brief Summary

- TD-DFT is reliable for excitonic systems, less so for strongly charge separated ones.
- Slippage between the chains has a very profound impact on the oscillator strength, less so on the energetics.
- For TFB:F8BT: all exciplex emission is from eclipsed configurations.
- Solvent effects a red-shift on exciplex, less so on XT.
- Intermediate (dark) states certainly play a role...perhaps consistent with the field-induced dissociation measurements.
Building a site model/1

Each monomer: localized Wannier orbital for HOMO and LUMO bands + set of localized vibrations

Interactions: Coulomb (J), Exchange (K), and dipole-dipole (D) interactions between e/h configurations.

Interchain coupling: $J, K, D + t = 0.15 t$6

Build a site model/2

- Use either quantum chemical or spectroscopic data to parameterize a lattice model for a given polymer chain or polymer dimer.

- Each site can have an electron, hole, or both (exciton).

- Each site has localized phonons + linear coupling to neighboring (intrachain) sites.

- Diagonalize (separately) electronic and vibrational contributions...

- Taxonomy of dimer models
Heterojunction Energetics

Comparison between Lattice model and TD-DFT energies.

- Lattice model adjusted to “match” experimental values (CT-XT gap)
- Transition moments are similar
- Both lattice and TDDFT predict 2-ary CT state
- Advantage of lattice model is that we can treat far larger systems than possible with TD-DFT.

In spite of its simplicity and direct molecularity, lattice model does a good job at modeling spectra, energetics, etc.

"Strong" $t_{\perp} = 0.15t_{\parallel}$; "inter", $t_{\perp} = 0.15t_{\parallel}$ only for center F8’s; "weak" $t_{\perp} = 0$, only

Coulomb (2-body) interactions.
Quantum Dynamics
What defines our “reaction coordinate” in CT reactions?

Recall familiar Marcus picture for electron transfer

How can we relate x to specific terms in our H?
Generic Model \(H = H_{el} + H_{ph} + V_{el/ph} \)

Diagonalize dimer hamiltonian:

- Diagonal Term defining Diabatic Potential Surfaces

\[
H_o = \sum_a |\psi_a\rangle \langle \psi_a| \left(\epsilon_a + \sum_i \hbar \omega_i (a_i^\dagger a_i + 1/2) + g_{aai}(a_i^\dagger + a_i) \right)
\]

- Relaxed (adiabatic) energies:
 \[
 \tilde{\epsilon}_a = \epsilon_a - \sum_i g_{aai}^2 \omega_i
 \]

- Diabatic couplings

\[
V = \sum_{ab} g_{abi} |\psi_a\rangle \langle \psi_b| (a_i^\dagger + a_i)
\]
Polaron transformed H

- More convenient to work in a *dressed representation*

\[\tilde{H} = e^{-i\Omega} H e^{i\Omega} \]

where

\[\Omega = \sum_{ai} g_{aai} \frac{1}{\omega_i} (a_i^\dagger + a_i) |\psi_a\rangle \langle \psi_a| \]

- Electron/phonon coupling

\[\tilde{V} = \sum_{abi} M_{abi} |\psi_a\rangle \langle \psi_b| \]

where

\[M_{abi} = g_{abi} \left(a_i^\dagger + a_i - \frac{2g_{aai}}{\omega_i} \right) e^{\sum_j \frac{g_{aaj} g_{bbj}}{\omega_j} (a_j^\dagger - a_j)} \]

In transformed representation, transitions from electronic states are accompanied by single phonon creation/annihilation + displacement in all normal coordinates.
1. Time-dependent Golden Rule

Lowest order approx: \(dW = \frac{2\pi}{\hbar} |V_{ab}|^2 \delta(E_a - E_b) \)

- written as a correlation function:
 \[
 W_{ab} = \int_0^\infty dt \langle M_{ab}(0)M_{ab}(t) \rangle e^{i\omega_{ab}t} \quad (12)
 \]

- \(\langle M_{ab}M_{ab}(t) \rangle \) is the autocorrelation of coupling operator.
 \[
 \langle M_{ab}(0)M_{ab}(t) \rangle = C_{\gamma}(t) \exp[A(t)] \quad (13)
 \]

Dynamical FC overlap factor:

\[
A = i \int_0^\infty J_c(\omega) \sin(\omega t) d\omega - \int_0^\infty J_c(\omega)(n(\omega) + 1)(1 - \cos(\omega t)) d\omega
\]

Position autocorrelation along diabatic coupling vector.

\[
C_{\gamma}(t) = \langle Q_{\gamma}(0)Q_{\gamma}(t) \rangle \quad (15)
\]

7 c.f Chemical Dynamics in Condensed Phase by A. Nitzan (2007)
Figure: Structure of photosynthetic reaction center in Bacterial Rhodopsin

Figure: 150 fs oscillation is due to coherent vibrational coupling between the two chromophores mediated by electronic interaction.
\[\langle M_{ab}M_{ab}(t) \rangle \] for projected 2-mode heterodimer/2

Figure: Autocorrelation of the \(\langle M_{ab}M_{ab}(t) \rangle \) coupling operator vs. time for 2-phonon/2 state Bcl/Bph dimer model.

\[\langle M_{ab}M_{ab}(t) \rangle \] gives similar behavior compared to experimental time-signals.
Model lattice dimer 1: F8BT:TFB with 2×12 sites + 12 high freq. (C=C) modes 12 low-freq torsional modes ($T = 175K$)

- Loss of coherence in < 100 fs due to coupling to many degrees of freedom
- Dimer model is perhaps too strongly coupled.
Model lattice dimer 2: fewer sites + 28 phonons \((T = 175K)\)

- Very little difference in general terms between coupling regimes...in terms of correlation functions.
- "Weak coupling" regime gives \(NO\) direct transition between exciton to exciplex
Recall:

\[W_{ab} = \int_{0}^{\infty} e^{i\tilde{\omega}_{ab}t} \langle M_{ab}M_{ab}(t) \rangle dt \]

(16)

Figure: Forward (\(XT \rightarrow CT\)) and Reverse (\(CT \rightarrow XT\)) golden-rule transition rates vs. interchain stacking and coupling
Why the slow-down for the Staggered Case??

Compare coupling vectors $Q_c = \sum_i \frac{g_{abi}}{\omega_i} q_i$

Eclipsed Coupling
ϕ_1, ϕ_2
$C=\text{C}(1), C=\text{C}(2)$

Staggered Coupling
ϕ_1, ϕ_2
$C=\text{C}(1), C=\text{C}(2)$

Intermed Coupling
ϕ_1, ϕ_2
$C=\text{C}(1), C=\text{C}(2)$

All coupling between XT and CT is from torsional motion in staggered case.
Non-Markovian Contributions

- Since transfer rates are on the order of the coherence decay, one must be concerned with the effect of memory on the predicted rate.
- Golden-rule is a Markovian limit.
- For non-Markovian dynamics, we need to integrate the Nakajima-Zwanzig eq.

\[
\frac{d\rho}{dt} = -\int_{0}^{t} \mathcal{K}(t - t')\rho(t')dt'
\]

(17)

- Can also use non-convolutionless form

\[
\frac{d\rho}{dt} = -\int_{0}^{t} \mathcal{K}_{cl}(t')dt' \rho(t)
\]

(18)
Non-Markovian Pauli master eq.

- Taking coupling as a perturbation and expanding in cumulants

\[\mathcal{K}^{(2)}_{cl}(t) = \mathcal{P} \mathcal{L} e^{i \mathcal{L}_0 t} \mathcal{L} \mathcal{P} \] \hspace{1cm} (19)

- After even more tedious algebra....

\[\frac{dP_a}{dt} = \sum_b (W_{ab}(t)P_b(t) - W_{ba}(t)P_{ba}(t)) \] \hspace{1cm} (20)

time-convolutionless Pauli master eq. for populations.
Taking coupling as a perturbation and expanding in cumulants:

\[\mathcal{K}_{cl}^{(2)}(t) = \mathcal{P} \mathcal{L}_v e^{i \mathcal{L}_0 t} \mathcal{L}_v \mathcal{P} \] \hspace{1cm} (19)

After even more tedious algebra:

\[\frac{dP_a}{dt} = \sum_b (W_{ab}(t)P_b(t) - W_{ba}(t)P_{ba}(t)) \] \hspace{1cm} (20)

time-convolutionless Pauli master eq. for populations.

with

\[W_{ab}(t) = 2 \text{Re} \int_0^t \langle M_{ab}M_{ba}(t') \rangle e^{i \tilde{\omega}_{ab} t'} dt' \] \hspace{1cm} (21)
Taking coupling as a perturbation and expanding in cumulants

\[\mathcal{K}_{cl}^{(2)}(t) = \mathcal{P}\mathcal{L}_v e^{i\mathcal{L}_o t} \mathcal{L}_v \mathcal{P} \]

(19)

After even more tedious algebra....

\[\frac{dP_a}{dt} = \sum_b (W_{ab}(t)P_b(t) - W_{ba}(t)P_{ba}(t)) \]

(20)

time-convolutionless Pauli master eq. for populations.

with

\[W_{ab}(t) = 2\text{Re} \int_0^t \langle M_{ab}M_{ba}(t') \rangle e^{i\tilde{\omega}_{ab} t'} dt' \]

(21)
Non-Markovian contributions

Model 2LS + model with couplings: $g_{ab} \propto \omega_i^p$. In GR limit, Ohmic: $p = -1/2$, super-ohmic $p = 0$

Figure: Left: Population decay from upper to lower state for ohmic = solid-line: super-ohmic = dashed lines for model 2LS +80 mode model. Right: detail of super-ohmic rates.

Note: $W_{21} < 0$ implies positivity violation in TCLME
Non-Markovian dynamics for heterojunction model

Model: 12-12 lattice + 24 phonons (12 low freq + 12 high-freq)

Figure: Left: XT → CT decay kinetics for tclme, sc-golden rule for various temperatures. Right: TCLME model eliminating either high or low freq. modes from model.

Transfer requires participation between both high and low frequency modes
Fully dynamic model: MCTDH

\[\text{MCTDH} = \text{MultiConfigurational Time-Dependent Hartree} \]

- **Nuclear** wavepacket is expanded in time-dependent basis

\[
\Psi(Q_i \cdots, Q_f, t) = \sum_{j_1=1}^{n_i} \sum_{j_f=1}^{n_f} A_{j_1 \cdots j_n}(t) \prod_{\kappa=1}^{f} \phi_{j_\kappa}^{(\kappa)}(Q_\kappa, t) \]

- Dirac-Frenkel variation principle

\[
\langle \delta \Psi | H - i \partial_t | \Psi \rangle = 0
\]

- Solve MCTDH equations of motion within a mean-field approx

\[
\langle H \rangle_{jl}^{(\kappa)} = \langle \psi_{j}^{(\kappa)} | H | \psi_{l}^{(\kappa)} \rangle
\]

where \(| \psi_{j}^{(\kappa)} \rangle \) denote quasi-particle wavefunctions.

- huge savings in both memory and cpu usage for high-dimensional systems

Comparing ME to MCTDH

effect of mode-mode coupling is consistent with numerically exact treatment10

\textbf{Figure:} Left: TCLME population decay ($T = 175 \text{K}$). Right: MCTDH results ($T = 0 \text{K}$).

Figure: Left: Coupled potential energy surfaces for model heterojunction. Right: $\langle x(t) \rangle$ on upper (blue) and lower (red) surfaces following excitation.
In MCTDH treatment, the $Q_a(t)$, Q_b vectors taken over a mean-field to define an effective Hamiltonian

a-d Evolution of adiabatic potentials projected onto branching plane ($Q_a(t)$, Q_b) at 2 time slices, $t = 0$ (left) and $t = 150$fs (right).

e,f $\langle X \rangle$ for wave packet for $t = 0$ to 50fs (left) and for 150 to 200 fs (right).

The intersection seam and crossing surfaces become dynamical quantities as well.
Effect of Electric Field

- No effect on exciton nor exciplex lifetime.
- Pronounced enhancement of photocurrent.

FIG. 1. Potential energy diagram describing the energetics and kinetics at type II polymer heterojunctions. The energetic order of $|A^{-}\tilde{D}^+\rangle_{r=\infty}$ and $|A^+D\rangle_{r=\infty}$ may be reversed for PFB:F8BT vs TFB:F8BT. The inset shows the band offsets at a type II heterojunction (see also [7]).

Effect of Electric Field

- No effect on exciton nor exciplex lifetime.
- Pronounced enhancement of photocurrent.

![Potential energy diagram](image)

FIG. 1. Potential energy diagram describing the energetics and kinetics at type II polymer heterojunctions. The energetic order of $|A^{-}D^{+}\rangle_{r=\infty}$ and $|A^{+}D\rangle_{r=\infty}$ may be reversed for PFB:F8BT vs TFB:F8BT. The inset shows the band offsets at a type II heterojunction (see also [7]).

Effect of Electric Field

- No effect on exciton nor exciplex lifetime.
- Pronounced enhancement of photocurrent.

Fig. 1. Potential energy diagram describing the energetics and kinetics at type II polymer heterojunctions. The energetic order of $|A^{-}D^{+}\rangle_{r=\infty}$ and $|A^{-}D\rangle_{r=\infty}$ may be reversed for PFB:F8BT vs TFB:F8BT. The inset shows the band offsets at a type II heterojunction (see also [7]).

Coherent transfer via intermediate12

MCTDH calculations on model 12/12 dimer.

(a) 12/12 model fully coupled: nearly 50% of $XT \rightarrow CT$ transfer occurs in 150 fs.

(b) $XT \rightarrow IS \rightarrow CT$ transfer only. Here we have set coupling matrix elements $g_{13i} = 0$ to force the $3 \rightarrow 2 \rightarrow 1$ indirect transfer.

12See Irene Burghardt’s talk next month!
Complex and dynamical systems requiring both state of the art computational techniques \textit{and} new theoretical approaches to study their dynamics.

Very strong mixing between electronic and vibrational quantum dynamics \Rightarrow very interesting dynamics!

Numerically exact treatments of dynamics coupled with accurate electronic structure of interface are required to fully capture the details of charge-transfer in these systems.

Eventually want to include continuum for charge-separation dynamics, higher order tclme methods, etc...
Thanks!

Funding
National Science Foundation
Robert A Welch Foundation
Texas Center for Superconductivity
J. S. Guggenheim Foundation

Collaborators
Irene Burghardt: ENS/Paris
Andrey Pereverzev: UH
John Ramon: UH
Carlos Silva: U. Montreal
Laura Herz: Oxford

Group info: http://k2.chem.uh.edu

Thanks also: Richard Friend and OE group for hospitality during my sabbatical.
the end!
misc. technical and/or formal details....
Interacting Dimer Model
Interactions between molecular dimers

Molecular dimer model: Start with isolated chains and allow to interact. \(^{13}\)

\[
H = \left(\epsilon_A + \sum_n g_{An} (a_n^\dagger + a_n) \right) \lambda + \left(\epsilon_B + \sum_n g_{Bn} (a_n^\dagger + a_n) \right) + \sum_n \hbar \omega_n (a_n^\dagger a_n)
\]

- \(\lambda\) interaction between chains (—)
- \(\epsilon_{A,B}\) excitation energies of isolated chains
- \(\{a_n, a_n^\dagger\} = \) phonons-normal modes localized on either A or B chain.

\(^{13}\)E. R. Bittner, A. Pereverzev, A. M. Goj, and I. Burghardt, in preparation
Example: 2-state system

For a two state system, \(E_{a,b} = \tilde{E} \pm \sqrt{\lambda^2 + \Delta^2} \) and freq. scaled coordinate \(q_i = \omega_i x_i \)

\[
H = \begin{bmatrix}
 E_a + V_a & V_c \\
 V_c & E_b + V_b
\end{bmatrix} + H_{\text{phonons}}
\]

(26)

with

\[
V_a = \sum_i q_i \frac{g_{Ai}}{\omega_i} \cos^2 \theta + \sum_j q_j \frac{g_{Bj}}{\omega_j} \sin^2 \theta = g_a Q_a
\]

(27)

\[
V_b = \sum_i q_i \frac{g_{Ai}}{\omega_i} \sin^2 \theta + \sum_j q_j \frac{g_{Aj}}{\omega_j} \cos^2 \theta = g_b Q_b
\]

(28)

\[
V_{ab} = V_c = - \cos \theta \sin \theta \left(\sum_i q_i \frac{g_{Ai}}{\omega_j} - \sum_j q_j \frac{g_{Bj}}{\omega_i} \right) = g_c Q_c
\]

(29)

where \(\tan 2\theta = \lambda / \Delta \) is the mixing angle between the electronic states.

\(\{Q_a, Q_b, Q_c\} \) define non-orthogonal unit vectors and \(g_{a,b,c} \) are linear coupling vectors.
Significance of coupling vectors

- Taking $q_i = \omega_i x_i$, polaron-transform translates each well to new diabatic minima located along Q_a and Q_b.

- Motion along Q_a or Q_b will not induce any further mixing of the electronic states.

- Only motion along $Q_c \propto Q_a - Q_b$ directly couples the diabatic states.

- $Q_c \perp$ seam of intersection between diabatic curves.
Q_c defines our “reaction coordinate”

Recall familiar Marcus picture for electron transfer
Further Implications of Q_γ mode: A-B dimer model

- Q_a and Q_b can define a 2D plane imbedded in the N dimensional space of normal coordinates with Q_c lying in this plane connecting the diabatic minima.
- For any n level electronic system: \exists an $O(n)$ dim. subspace embedded amongst the N normal modes that encapsulates all electronic coupling.
- Can project out orthogonal P and Q subspaces

\[
P = \sum_{a \neq b} S_{ab}^{-1} Q_a \otimes Q_b \tag{30}
\]

\[
Q = 1 - P \tag{31}
\]

Using the projection ops and block-diagonalization, can determine coupling and residual modes + their bi-linear coupling.
Deriving Time-convolutionless Master Eq.
Since not all phonons are created equal, we partition total system into $P \supseteq Q_a, Q_b, (\& Q_c)$ modes + electronic states + treat remainder $\exists Q$ as an external bath.

$$\rho = (P + Q)\rho \quad (32)$$

Nakajima/Zwanzig Eq.

$$\frac{d}{dt} P\rho(t) = -i\mathcal{L}_{PP} P\rho(t) - \int_{t_0}^{t} dt' \mathcal{L}_{PQ} e^{-i\mathcal{L}_{QQ}(t-t')} \mathcal{L}_{QP} P\rho(t')$$

$$- i\mathcal{L}_{PQ} e^{-i\mathcal{L}_{QQ}(t-t_o)} Q\rho(t) \quad (33)$$

$$= -\int_{t_0}^{t} dt' \mathcal{K}_{NZ}(t-t') P\rho(t') \quad (34)$$

so far this is exact...
Quantum Dynamics (2)

Standard Assumptions

- Work in the interaction representation of decoupled system/bath.
- Assume at t=0, bath is at thermal eq. and density matrix is separable.

\[
\frac{\partial \tilde{\rho}}{\partial t} = - \sum_{0}^{t} dt' \sum_{ij} C_{ij}(t - t')[\tilde{S}_i(t), [\tilde{S}_j(t'), \tilde{\rho}(t')]]
\] (35)

where

\[
C_{ij} = \langle B_i(t)B_j(t') \rangle
\] (36)

taken to be real.
Quantum Dynamics (2)

Standard Assumptions

- Work in the interaction representation of decoupled system/bath.
- Assume at \(t=0 \), bath is at thermal eq. and density matrix is separable.
- System bath coupling is of the form: \(\sum_k B_k S_k \)

\[
\frac{\partial \tilde{\rho}}{\partial t} = - \sum_0^t dt' \sum_{ij} C_{ij}(t - t')[\tilde{S}_i(t), [\tilde{S}_j(t'), \tilde{\rho}(t')]] \tag{35}
\]

where

\[
C_{ij} = \langle B_i(t)B_j(t') \rangle \tag{36}
\]

taken to be real.
Standard Assumptions

- Work in the interaction representation of decoupled system/bath.
- Assume at $t=0$, bath is at thermal eq. and density matrix is separable.
- System bath coupling is of the form: $\sum_k B_k S_k$
- Any explicitly treated phonons are coupled to a thermal bath held at thermal eq.

\[
\frac{\partial \tilde{\rho}}{\partial t} = - \sum_{0}^{t} dt' \sum_{ij} C_{ij}(t - t')[\tilde{S}_i(t), [\tilde{S}_j(t'), \tilde{\rho}(t')]] \tag{35}
\]

where

\[
C_{ij} = \langle B_i(t)B_j(t') \rangle \tag{36}
\]

taken to be real.
Standard Assumptions

- Work in the interaction representation of decoupled system/bath.
- Assume at $t=0$, bath is at thermal eq. and density matrix is separable.
- System bath coupling is of the form: $\sum_k B_k S_k$
- Any explicitly treated phonons are coupled to a thermal bath held at thermal eq.

$$\frac{\partial \tilde{\rho}}{\partial t} = - \sum_0^t dt' \sum_{ij} C_{ij}(t - t')[\tilde{S}_i(t), [\tilde{S}_j(t'), \tilde{\rho}(t')]] \tag{35}$$

where

$$C_{ij} = \langle B_i(t)B_j(t')\rangle \tag{36}$$

taken to be real.
Time-Convolutionless approach
Non-Markovian Contributions

- Since transfer rates are on the order of the coherence decay, one must be concerned with the effect of memory on the predicted rate.
- Golden-rule is a Markovian limit.
- For non-Markovian dynamics, we need to integrate the Nakajima-Zwanzig eq.

$$\frac{d\rho}{dt} = -\int_{0}^{t} \mathcal{K}(t - t')\rho(t')dt'$$ \hspace{1cm} (37)

- Can also use non-convolutionless form

$$\frac{d\rho}{dt} = -\int_{0}^{t} \mathcal{K}_{cl}(t')dt'\rho(t)$$ \hspace{1cm} (38)
Taking coupling as a perturbation and expanding in cumulants

\[\mathcal{K}_{cl}^{(2)}(t) = \mathcal{P} \mathcal{L} e^{i \mathcal{L} \cdot t} \mathcal{L} \mathcal{P} \]

After even more tedious algebra,…

\[\frac{dP_a}{dt} = \sum_b (W_{ab}(t)P_b(t) - W_{ba}(t)P_{ba}(t)) \]

time-convolutionless Pauli master eq. for populations.
Non-Markovian Pauli master eq.

- Taking coupling as a perturbation and expanding in cumulants

\[\mathcal{K}^{(2)}_{cl}(t) = \mathcal{P} \mathcal{L}_v e^{i\mathcal{L}_v t} \mathcal{L}_v \mathcal{P} \]

- After even more tedious algebra....

\[\frac{dP_a}{dt} = \sum_b (W_{ab}(t)P_b(t) - W_{ba}(t)P_{ba}(t)) \]

time-convolutionless Pauli master eq. for populations.

- with

\[W_{ab}(t) = 2\text{Re} \int_0^t \langle M_{ab} M_{ba}(t') \rangle e^{i\tilde{\omega}_{ab} t'} dt' \]
Taking coupling as a perturbation and expanding in cumulants

\[\mathcal{K}_{cl}^{(2)}(t) = \mathcal{P} \mathcal{L}_v e^{i\mathcal{L}_v t} \mathcal{L}_v \mathcal{P} \]

(39)

After even more tedious algebra....

\[\frac{dP_a}{dt} = \sum_b (W_{ab}(t)P_b(t) - W_{ba}(t)P_{ba}(t)) \]

(40)

time-convolutionless Pauli master eq. for populations.

with

\[W_{ab}(t) = 2 \text{Re} \int_0^t \langle M_{ab} M_{ba}(t') \rangle e^{i\tilde{\omega}_{ab} t'} dt' \]

(41)
Non-Markovian contributions

Model 2LS + model with couplings: $g_{abi} \propto \omega_i^p$. In GR limit, Ohmic: $p = -1/2$, super-ohmic $p = 0$

Figure: Left: Population decay from upper to lower state for ohmic = solid-line: super-ohmic=dashed lines for model 2LS +80 mode model. Right: detail of super-ohmic rates.

Note: $W_{21} < 0$ implies positivity violation in TCLME
Removing Time-convolution

- Take Laplace x-form of the NZ equation

\[\mathcal{L}(\tilde{\rho})(s) - \rho(0) = -\mathcal{K}_{NZ}(s)\mathcal{L}(\tilde{\rho}(s)) \quad (42) \]

- Rearrange:

\[\mathcal{L}(\tilde{\rho})(s) = \frac{\rho(0)}{s + \mathcal{K}(s)} \quad (43) \]
Removing Time-convolution

- Take Laplace x-form of the NZ equation

\[\mathcal{L}(\tilde{\rho})(s) - \rho(0) = -K_{NZ}(s)\mathcal{L}(\tilde{\rho}(s)) \] \hspace{1cm} (42)

- Rearrange:

\[\mathcal{L}(\tilde{\rho})(s) = \frac{\rho(0)}{s + \mathcal{K}(s)} \] \hspace{1cm} (43)

- Inverse LP (closing contour over poles)

\[\mathcal{U}(t) = \frac{1}{2\pi i} \int_{\eta-i\infty}^{\eta+i\infty} \frac{e^{st}}{s + \mathcal{K}(s)} ds \] \hspace{1cm} (44)
Removing Time-convolution

- Take Laplace x-form of the NZ equation
 \[\mathcal{L}(\tilde{\rho})(s) - \rho(0) = -\mathcal{K}_{NZ}(s)\mathcal{L}(\tilde{\rho}(s)) \quad (42) \]

- Rearrange:
 \[\mathcal{L}(\tilde{\rho})(s) = \frac{\rho(0)}{s + \mathcal{K}(s)} \quad (43) \]

- Inverse LP (closing contour over poles)
 \[U(t) = \frac{1}{2\pi i} \int_{-\infty}^{+\infty} e^{st} ds \quad (44) \]

- Time-evolution eq:
 \[\tilde{\rho}(t) = U(t)\rho(0) \quad (45) \]
Removing Time-convolution

- Take Laplace x-form of the NZ equation

\[\mathcal{L}(\tilde{\rho})(s) - \rho(0) = -\mathcal{K}_{NZ}(s)\mathcal{L}(\tilde{\rho}(s)) \]
(42)

- Rearrange:

\[\mathcal{L}(\tilde{\rho})(s) = \frac{\rho(0)}{s + \mathcal{K}(s)} \]
(43)

- Inverse LP (closing contour over poles)

\[U(t) = \frac{1}{2\pi i} \int_{\eta-i\infty}^{\eta+i\infty} \frac{e^{st}}{s + \mathcal{K}(s)} ds \]
(44)

- Time-evolution eq:

\[\tilde{\rho}(t) = U(t)\rho(0) \]
(45)
Convolutionless NZ equation

- Inverting:
 \[\rho(0) = U(t) \tilde{\rho}(t) \] \hspace{1cm} (46)

- Taking time-deriv.
 \[\frac{d}{dt} \tilde{\rho}(t) = \left(\frac{d \log U}{dt} \right) \tilde{\rho}(t) \] \hspace{1cm} (47)

Convolutionless NZ equation

- Inverting:
 \[\rho(0) = \mathcal{U}(t) \tilde{\rho}(t) \]
 \[(46) \]

- Taking time-deriv.
 \[\frac{d}{dt} \tilde{\rho}(t) = \left(\frac{d \log \mathcal{U}}{dt} \right) \tilde{\rho}(t) \]
 \[(47) \]

- Convolutionless kernel
 \[K_{cl}(t) = -\frac{d^2}{dt^2} \log \mathcal{U} \]
 \[(48) \]

Convolutionless NZ equation

- Inverting:

\[\rho(0) = U(t) \tilde{\rho}(t) \] (46)

- Taking time-deriv.

\[\frac{d}{dt} \tilde{\rho}(t) = \left(\frac{d \log U}{dt} \right) \tilde{\rho}(t) \] (47)

- Convolutionless kernel \(^{14}\)

\[K_{cl}(t) = - \frac{d^2}{dt^2} \log U \] (48)

Convolutionless NZ equation

- Inverting:
 \[\rho(0) = U(t) \tilde{\rho}(t) \]
 (46)

- Taking time-deriv.
 \[\frac{d}{dt} \tilde{\rho}(t) = \left(\frac{d \log U}{dt} \right) \tilde{\rho}(t) \]
 (47)

- Convolutionless kernel \(^{14}\)
 \[K_{cl}(t) = -\frac{d^2}{dt^2} \log U \]
 (48)

- Do perturbative expansion on \(U(t)\),

Quantum Chemical Studies
Electronic Structure at Heterojunction Interface

- π-stacked systems are very challenging: dispersion interaction charge-separation is also difficult: requiring good description of both exchange and correlation effects.

- Time-dependent Density Functional Theory + hybrid exchange/correlation functions problematic..but currently the best choice for large-scale systems (300 atoms)

- Why TD-DFT? Considers the response of the KS ground state to an excitation. Formally, equivalent to RPA since it includes back-polarization of ground state due to excitation.

- Need to have reliable parameters before we can do any sort of dynamics (GIGO)
TFB:F8BT Heterojunction

- General approach: MD + DFT to optimize structure, then TD-DFT/6-31G**/B3LYP + HF exchange.
- Computationally expensive (about 1 month CPU time/calculation).

Why is the stacking (slippage) an issue?

- In excited state

\[\cdots - F8^{\delta+} - BT^{\delta-} - \cdots & \cdots - F8^{\delta-} - N\phi_3^{\delta+} - \cdots \]

F8BT* & TFB*

(49)

due to alternation of HOMO/LUMO levels from each monomer.

- Eclipsed (attractive)

\[\cdots - BT^{\delta-} - F8^{\delta+} - BT^{\delta-} - \cdots \]

\[\cdots - N\phi_3^{\delta+} - F8^{\delta-} - N\phi_3^{\delta+} - \cdots \]

(50) & (51)

- Staggered (repulsive)

\[\cdots - BT^{\delta-} - F8^{\delta+} - BT^{\delta-} - \cdots \]

\[\cdots - N\phi_3^{\delta+} - F8^{\delta-} - N\phi_3^{\delta+} - \cdots \]

(52) & (53)
Map of interaction energy16

Figure: DFT structure/INDO descript. of PFB excited state/Coulomb interaction w/F8BT (ground state).

CI theory grossly overestimates the excitation energy.

CI: F8BT exciton is lowest energy state since interchain coupling is weak.
TFB:F8BT Heterojunction

TD/DFT energy levels for eclipsed vs staggered configurations for model solvent dielectric (toluene) vs. gas phase.

Note: considerable exciplex stabilization due to solvent polarization.
Only eclipsed exciplex state carries appreciable oscillator strength.
Comparison of transition densities:

For XT, most oscillator strength is localized on the F8BT with some mixing with the TFB chain.
Comparison of transition densities: Eclipsed Exciplex States

Eclipsed CT

Eclipsed CT2

most of transition density is on 2nd CT state
Comparison of transition densities: Staggered Exciplex states

Stag. CT1 & CT2
Figure: Projection of excited states onto monomer units

- **Eclipsed**: exciplex has considerable mixing between purely excitonic configurations and purely CT configurations.
- **Staggered Exciplex**: almost purely polaronic (CT) configurations.
Brief Summary

- TD-DFT is reliable for excitonic systems, less so for strongly charge separated ones.
- Slippage between the chains has a very profound impact on the oscillator strength, less so on the energetics.
- For TFB:F8BT: all exciplex emission is from eclipsed configurations.
- Solvent effects a red-shift on exciplex, less so on XT.
- Intermediate (dark) states certainly play a role...perhaps consistent with the field-induced dissociation measurements.
Building a site model/1

each monomer: localized
Wannier orbital for HOMO and LUMO bands + set of localized vibrations
Interactions: Coulomb (J), Exchange (K), and dipole-dipole (D) interactions between e/h configurations.
Interchain coupling: \(J, K, D + t_\perp = 0.15t_\parallel \)

Building a site model/2

- Use either quantum chemical or spectroscopic data to parameterize a lattice model for a given polymer chain or polymer dimer.

 ![Polymer Lattice Diagram]

- Each site can have an electron, hole, or both (exciton)

 ![Electron, Hole, and Exciton Diagrams]

- Each site has localized phonons + linear coupling to neighboring (intrachain) sites.

- Diagonalize (separately) electronic and vibrational contributions...

- Taxonomy of dimer models
Heterojunction Energetics

Comparison between Lattice model and TD-DFT energies.

- Lattice model adjusted to “match” experimental values (CT-XT gap)
- Transition moments are similar
- Both lattice and TDDFT predict 2-ary CT state
- Advantage of lattice model is that we can treat far larger systems than possible with TD-DFT.

"Strong" $t_\perp = 0.15 t_\parallel$; "inter", $t_\perp = 0.15 t_\parallel$
only for center F8’s; "weak" $t_\perp = 0$, only

Coulomb (2-body) interactions.

In spite of its simplicity and direct molecularity, lattice model does a good job at modeling spectra, energetics, etc.