Quantum Dynamics: Applications in Biological and Materials Systems

by Eric R. Bittner, University of Houston

Published by Taylor and Francis/CRC Press.

Order a copy from Amazon.com

Solutions to Problems

Additional Problems

1 Survey of Classical Mechanics     

2 Waves and Wave Functions                                              

3 Semiclassical Quantum Mechanics                            

4 Quantum Dynamics                        

5 Representations and Dynamics                      

6 Quantum Density Matrix                                     

7 Excitation Energy Transfer                                          

8 Electronic Structure of Conjugated Systems                                     

9 Electron-Phonon Coupling in Conjugated Systems                               

10 Lattice Models for Transport and Structure

Coming soon...

Time-dependent spectroscopic techniques continue to push the frontier of chemical physics. Yet, they receive scant mention in introductory courses and are poorly covered in standard texts. Quantum Dynamics: Applications in Biological and Materials Systems bridges the gap between what is traditionally taught in a one-semester quantum chemistry course and the modern field of chemical dynamics, presenting the quantum theory of charge and energy transport in biological systems and optical-electronic materials from a dynamic perspective.


Taking a pedagogical approach, the book begins by reviewing the concepts of classical mechanics that are necessary for studying quantum mechanics. It discusses waves and wave functions and then moves on to an exploration of semiclassical quantum mechanics methods, an important part of the development and utilization of quantum theory.


The main focus of the book is the chapter on quantum dynamics, which begins with a brief review of the bound states of a coupled two-level system. This is discussed with a time-independent as well as a time-dependent perspective. The book also explores what happens when the two-level system has an additional harmonic degree of freedom that couples the transitions between the two states.


The book reviews different ways in which one can represent the evolution of a quantum state, explores the quantum density matrix, and examines the basis for excitation energy transfer between molecules. Later chapters describe the π electronic structure of conjugated organic systems and discuss electron-phonon coupling in conjugated systems and transport and dynamics in extended systems.



Chapters

Coming soon...